Lab 7 Simulation of DNA hybridizations

NUPACK Registration (Free now)https://www.nupack.org/subscribe

Register your use name on NUPACK Cloud for use it

DNA hybridization energy calculation

ssDNA: single-stranded

dsDNA: double-stranded

- dsDNA is stabilized by base pairing
- Hybridization energy follows a thermal physical reaction process:

 $\Delta G(total) = \sum \Delta G (individual \ base \ pairs) + \sum \pi - \pi \ stacking - \sum charge \ repulsion$

 Melting temperature is an important parameter for DNA hybridization stability **DNA thermal melting** (or thermal denaturation): The dsDNA complexes may be dissociated by thermal denaturation, which is referred to as thermal melting.

- Melting temperature (Tm): the melting temperature of DNA refers to the temperature at which 50% of DNA in a sample has denatured from double-stranded DNA (dsDNA) to single-stranded DNA (ssDNA). Sensitive measurement of the melting curve of a sample of DNA can be used to detect single nucleotide differences between two DNA samples.
- Other melting methods: Chemical reagent can also disrupt dsDNA, such as urea, SDS, detergent ...
 It is called chemical denaturation

Melting Temperature (Tm) for dsDNA complexes with different GC%. Note, a dsDNA with high GC% shows a higher melting temperature due to the increased thermal stability. In addition, magnesium ions also play a key role to stabilize dsDNA by shielding the negative charges of phosphate backbone.

Tm, practically, is calculated by slope derivative analysis, that Tm is the temperature at the peak slope value. Generally, the first-order derivative analysis can be used to produce the slope curve and identify Tm value

Lab Goal:

- Learn NUPACK to simulate DNA hybridizations;
- Learn the fitting of DNA melting temperature;
- Understand the how DNA melting temperature is impacted by GC%, length, and Mg2+ conc.

DNA computation and simulation with NUPACK

Analysis	Design	Utilities		Download	٩	•
Input					Intro	Demos
Material 😮		Temperature: 😥	Melt			
ORNA 🔿 DNA		37.0 °C				
 Model Options 						
▼ Tube: Tube 1						
Tube 😧					A View E	Ensemble
Tube 1						
 Species (2) 						
Strand	Seau	Jence		Concentra	tion	
Strand 1	•			Q 1	- Μų •	×
O Add Strand						
Complexes 🥹						
Max complex size						
1 strar	nds					
Include or excl	lude specific	complexes				
Add Tube						

• Set Parameters for NUPACK

- Can analyze DNA and RNA;
- Set temperature and Melting analysis
- Run user-defined sequences and concentration
- In the "More Option": Set Salt concentrations (Na+ and Mg2+)

Analysis	Design	Utiliti					D	ownload	2		. 🕪
Input									Intro		Demos
erial 📀		Temperatu	ire: 😢	Melt							
RNA 🧿 DNA		Min	37.0 °	C Step	°C	Ma	x	°C			
Nodel Options											
arameters 🥹		Ensen	nble ₀		Salts 😧						
DNA dna04	•	All s	stacking	•	Na ⁺	1.0	М	Mg ⁺⁺	0.0	М	
ube 😧 Tube 1									I Vie	w Ens	emble
Strand	Seque	ence						Concentratio	'n		
							Ð.	1.0	uМ	•	
Strand 1	•								Parter		^

- Set Melting Temp analysis for poly (A-T) 20: Choose "DNA" and "Melt"
- Set Min 25 C and Max 85 C, step 2 C
- Set "dna04" and "All stacking"; set Na+ to 0.137 M, Mg++ to 0 M
- Set name of "Tube" as: poly (A-T)20
- Set two strands of poly A20 and polyT20. You can use "Add strand" to add the second strand. Conc. = 1 uM

										Intro		Demos
erial 😧	Temp	erature: 🔞		Melt								
RNA 🧿 DNA	Mi	n 25	°C	Step	2 °C	Ν	Лах	85	°C			
Nodel Options												
arameters 📀	E	insemble 💡			Salts 😢							
DNA dna04 (NUPACK	(3) 🝷	All stackin	g	•	Na ⁺	0.137	М	1	Mg ⁺⁺	0.0	М	
ube 📀										L Vie	w Ens	emble
ube poly (A-T)20 • Species 📀										<u></u> Vie	w Ens	emble
ube poly (A-T)20 • Species 📀 Strand	Sequence							Conce	ntratio	⊥ Vie	w Ens	emble
ube I poly (A-T)20	Sequence	33333333333					Đ	Conce	ntration	▲ Vie	w Ens	emble

- Set "Max Complex Size" to: 2 strands for dsDNA
- Click "Analyze"

pe 🕜				View Ens	semble
ooly (A-T)20					
Species 🕜					
Strand	Sequence		Concentration		
poly A 20 🔹	aaaaaaaaaaaaaaaaaaaa	Q	1.0	μM 🝷	×
poly T 20 🔹	ttttttttttttttttt	Q	1.0	μM -	×
Add Strand					
mplexes 🥑 Max complex size					
2 strands					
 Include or exclude s 	specific complexes				
Add Tube					
					Analyz

- Click results from analysis view melting graph.
- You can drag the temperature bar to view the hybridization changes at a specific temperature

- Download data from NUPACK simulation
- Click "Download" to save the simulated DNA hybridization data in excel.

• Fitting of "Melt Temp" from downloaded data

- Tm fitting with IC50 online tool: <u>http://www.ic50.tk/index.html</u>
- Copy and paste data into the blank box, click submit. IC50 is the Melt Temp of poly (A-T)20

Task 1 Use Nupack to simulate and analyze dsDNA melting graph (from 25 – 85 C, 3 C per step)

- GC%: Thermal melting graph for 1 uM poly(A-T)₂₀ and poly (C-G)20; at 0.137M Na+, 0 Mg2+, Fitting for Tm
- Length: Thermal melting graph for 1 uM poly(A-T)20 and 1 uM poly(A-T)40; at 0.137 M Na+, 0 Mg2+, Fitting for Tm
- Mg2+: Thermal melting graph for 1 uM poly(A-T)₂₀ at 0.137 M Na+, 0 M Mg2+, Fitting for Tm.

Do it again for salt conditions at 0.137 M Na+, 0.01 M Mg2+.

How to conclude the parameters that affect the melt Temp of dsDNA?

Task 2. DNA hybridization melting temperature to detect SNP/SNV (Single-nucleotide Polymorphism/Variants)

A single nucleotide polymorphism, or SNP (pronounced "snip"), is a variation at a single position in a DNA sequence among individuals. For example, at a specific base position in the human genome, the G nucleotide may appear in most individuals, but in a minority of individuals, the position is occupied by an A. This means that there is a SNP at this specific position, and the two possible nucleotide variations – G or A – are said to be the alleles for this specific position. Although a particular SNP may not cause a disorder, some SNPs are associated with certain diseases.

SNP may or may not cause an amino acid mutation.

Single-nucleotide variant (SNV) is a variation in a single nucleotide. SNVs differ from SNPs in that a SNV can be somatic[9] and **can be caused by cancer**,[10] but a SNP has to segregate in a species' population of organisms. SNVs also commonly arise in molecular diagnostics such as designing PCR primers to detect viruses, in which the viral RNA or DNA sample may contain SNVs.

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism#/media/File:Dna-SNP.svg

SNP/SNV detection by PCR with melting temperature difference, **first-order derivative analysis**

Tm is the temperature with the highest derivative value

Example: CYP1A2 SNP

rs762551, also known as -164A>C or -163C>A, is a SNP encoding the CYP1A2*1F allele of the CYP1A2 gene. The CYP1A2 gene encodes a member of the cytochrome p450 family of proteins, which metabolize nutrients and drugs. One well known substrate of CYP1A2 is caffeine; individuals who carry one or more CYP1A2*1C alleles are "slow" caffeine metabolizers, whereas carriers of the variant CYP1A2*1F are "fast" caffeine metabolizers.

Primer	Sequences	
TaqMan probe – TET	5'-CTC TGT GGG CCC AGG ACG CAT-3'	
TaqMan probe – FAM	5'-TC TGT GGG CAC AGG ACG CAT GG-3'	
TaqMan Forward primer	5'-TTT CCA GCT CTC AGA TTC TGT GAT-3'	
TaqMan Reverse primer	5'-GGA TAC CAG AAA GAC TAA GCT CCA TC	2-31
Forward primer*	5'-TTC CCC ATT TTG GAG TGG TC-3'	
Reverse primer*	5'-CCG AGA AGG GAA CAG ACT GG-3'	

Home > Search Tool > Search Results > C 8881221_40

Nordmark et. al. 2002

SNP ID:	rs762551
Gene	▼CYP1A2
Gene Name	cytochrome P450 family 1 subfamily A member 2
Set Membership:	> HapMap > DME > Validated > Inventoried
Chromosome Location:	- 1
Polymorphism:	C/A, Transversion Substitution
Context Sequence [VIC/FAM]:	TGCTCAAAGGGTGAGCTCTGTGGGC[C/A]CAGGACGCATGGTA GATGGAGCTTA

Task 2: Use Nupack to predict thermal melting graphs and Tm at 0.137 M Na+ and 0 Mg++

1) Anti-TET + TET seq (1 uM) and anti-TET + FAM seq (1 uM)

	Sequence	Tm (C)
Target TET	CTCTGTGGGC <mark>C</mark> CAGGACGCAT	
Target FAM	CTCTGTGGGCACAGGACGCAT	
Anti-TET	ATGCGTCCTGGGCCCACAGAG	

2) Based on Tm difference, suggest **a temperature** that produces the biggest difference for hybridizations between TET/anti-TET and FAM/anti-TET

	Sequence	Test Temperature (C)	Hybridization yield (%)
Target TET	CTCTGTGGGC <mark>C</mark> CAG GACGCAT		
Target FAM	CTCTGTGGGCACA GGACGCAT		

Melt Temp by first-order derivative analysis

Hybridization Yield%

Nupack can predict the equilibrium conc. of hybridizations. You can calculate the product yield:

```
e.g.
```

```
[Target dsDNA]/[total ssDNA input ] = 0.081/0.1 = 0.81=81%
```

Task 3. Predict the secondary structure of RNA (RNA mode at 37 C) : the folding structure of SARS-COV-2 (cause COVID-19) amplicons for PCR diagnosis

N1:

GATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGG CAGTAACCAGAAT

N2:

ACTAATCAGACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAG CGTTCTTCGGAATGTCGCGC

N3:

AGACGGCATCATATGGGTTGCAACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGC AATCCTGCTAACAATGCTGCAATCGTGCTACAACTTCCTCAAGGAACAACA

The color means the probability of the base in the predicted structure: Red, high probability; blue, low probability

- Calculation mode for RNA
- Under RNA mode, you cannot choose salt concentration
- Set Temp to 37 C, 1 strand

Material 📀	Temperature: 🚱 🛛 🕢 Melt	t			
ORNA 🔿 DNA	37 °C				
 Model Options 					
Parameters 📀	Ensemble 🤣	Salts 💡			
RNA rna06	All stacking	• Na ⁺ 0.137 M	Mg ⁺⁺	0 M	
▼ Tube: N1					-
				A View Ens	semble
Tube 📀					50111010
Tube 🥹 N1					
Tube 🥹 N1 • Species 💡					
Tube 🥹 N1 • Species 📀 Strand	Sequence		Concentration		
Tube 🥹 N1 • Species 🥹 Strand N1 •	Sequence N1 : GAUAAUGGACCCCAAAAUCAGCGAAAUGCACCCC	CGCAUUACGUUUGGUGGACCCI 🗨	Concentration 1	μM -	×
Tube 🧿 N1 Species 🖓 Strand N1 Add Strand	Sequence N1 : GAUAAUGGACCCCAAAAUCAGCGAAAUGCACCCC	CGCAUUACGUUUGGUGGACCCL Q	Concentration 1	μM -	×
Tube N1 Species Strand N1 Add Strand Complexes Complex	Sequence N1 : GAUAAUGGACCCCAAAAUCAGCGAAAUGCACCCC	CGCAUUACGUUUGGUGGACCCI 🗨	Concentration 1	μM 🝷	*
Tube N1 Species Strand N1 Add Strand Complexes Max complex size	Sequence N1 : GAUAAUGGACCCCAAAAUCAGCGAAAUGCACCCC	CGCAUUACGUUUGGUGGACCCL Q	Concentration 1	μM -	*

Equilibrium Probability

Free energy of the secondary structure: -15.42 kcal/mol

Data sheet

Task 1 (at least 2 C interval, from 20 - 80 C) Na+ fixed at 0.137 M

- Figure 1 Thermal melting curves for poly(A-T)20 vs poly (C-G)20
- Figure 2 Thermal melting curves for poly(A-T)20 vs poly (A-T)40
- Figure 3 Thermal melting curves for poly (A-T)20 at 0 Mg2+ vs 0.01 M Mg2+
- Tm value fitting

Task 2

Use salt condition: 0.137 M Na+, 0 Mg

Thermal meting curves for TET and FAM, Tm value fitting using 1st order of derivative analysis

Pick up a temperature based on derivative analysis , compare hybridization yield difference between TET and FAM at this fixed temerpature.

Task 3

• Folding structure for N1, N2, N3 amplicons